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Numerical experiments are conducted to study high-Rayleigh-number convective
turbulence (Ra ranging from 2× 106 up to 2× 1011) in a Γ = 1/2 aspect-ratio
cylindrical cell heated from below and cooled from above and filled with gaseous
helium (Pr = 0.7). The numerical approach allows three-dimensional velocity, vorticity
and temperature fields to be analysed. Furthermore, several numerical probes are
placed within the fluid volume, permitting point-wise velocity and temperature time
series to be extracted. Taking advantage of the data accessibility provided by the
direct numerical simulation the flow dynamics has been explored and separated
into its mean large-scale and fluctuating components, both in the bulk and in the
boundary layer regions. The existence of large-scale structures creating a mean flow
sweeping the horizontal walls has been confirmed. However, the presence of a single
recirculation cell filling the whole volume was observed only for Ra < 109–1010 and
with reduced intensity compared to axisymmetric toroidal vortices attached to the
horizontal plates. At larger Ra the single cell is no longer observed, and the bulk
recirculation breaks up into two counter-rotating asymmetric unity-aspect-ratio rolls.
This transition has an appreciable impact on the boundary layer structure and on the
global heat transfer properties. The large-scale structure signature is reflected in the
statistics of the bulk turbulence as well, which, taking advantage of the large number
of numerical probes available, is examined both in terms of frequency spectra and
of temperature structure functions. The present results are also discussed within the
framework of recent theoretical developments showing that the effect of the aspect
ratio on the global heat transfer properties at large Ra still remains an open question.

1. Introduction
Turbulent convection in fluid layers confined between two horizontal plates occurs

when a sufficiently large temperature difference between the lower heated and the
upper cooled plates, is established. The main dimensionless parameter governing
this phenomenon, often referred to as Rayleigh–Bénard convection†, is the Rayleigh
number (Ra), defined as

Ra =
gα∆h3

νk
, (1.1)

where ∆ and h denote the temperature difference between the plates and their
separation distance respectively and g is the acceleration due to gravity. The fluid

† True Rayleigh–Bénard flow is only for fluid layers of infinite extent in the horizontal directions.
However, the same name is often used for confined geometries.
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properties are described by the parameters α, ν and k which are, respectively, the
thermal expansion coefficient, the kinematic viscosity and the thermal diffusivity. The
increase of Ra leads to the onset of convective motion and, for Ra > RaT ' 106, for
the present Γ = 1/2 aspect-ratio cylindrical cell, a fully developed turbulent state is
reached in the bulk (see e.g. Heslot, Castaing & Libchaber 1987). It should be pointed
out that the exact value of RaT depends not only on the particular criterion selected
to judge the onset of turbulence but also on the cell geometry and the Prandtl number
Pr = ν/k; however, for sufficiently high values of Ra every configuration eventually
becomes turbulent.

Over the past few decades, great effort has been devoted to the study of convective
turbulence in the fully developed condition (Siggia 1994) owing to the direct impli-
cations either for problems of engineering interest (heat exchangers in power plants
or melting processes) or for natural phenomena (e.g. in the atmosphere, oceans and
Earth’s mantle). From a practical viewpoint, one of the main features of interest is
the influence of the forcing parameter, Ra, upon the heat exchange properties of the
flow. The latter are estimated in non-dimensional form through the Nusselt number
(Nu) defined as

Nu =
Hh

λ∆
. (1.2)

Here H denotes the heat per unit surface area transferred between the two plates and
λ the thermal conductivity. Theories and experiments have suggested a dependence
of Nu on Ra of the form

Nu = ARaβ, (1.3)

although with possible corrections (as suggested by Grossmann & Lohse 2000). An
overview of past and more recent results (see e.g. Chavanne et al. 2001, and references
therein) suggests that the power law (1.3) cannot be considered as ‘universal’ because
of the dependence of the coefficients A and β upon other non-dimensional parameters.
As suggested by Wu & Libchaber (1992), these governing dimensionless groups are
the Prandtl number (Pr), and the aspect ratio Γ defining the ratio between the lateral
and vertical extent of the cell. The first parameter is related to the fluid properties
while the second is introduced since, for practical purposes, most of the experiments
and numerical simulations of Rayleigh–Bénard convection are conducted in laterally
confined domains. It is found, however, that even when Pr and Γ are fixed, a
dependence of the coefficients of (1.3) upon Ra is observed provided Ra is sufficiently
large. It was indeed found experimentally by Castaing et al. (1989) and theoretically
confirmed by Shraiman & Siggia (1990) that at large Pr (Pr > 0.4), β is constant and
equal to about 2/7. The so-called 2/7 regime is however observed within a limited
range of Ra and both the upper bound of existence of this regime and the magnitude
of β at very large Ra still remain unclear since the β parameter is not a constant.
Such uncertainties limit the applicability of relation (1.3) for accurate heat transfer
predictions since, due to the large Ra of interest in practical applications, a small
error in the β estimation leads to order-of-magnitude errors in the Nu prediction.

The effect of Ra on the magnitude of β at large Pr is related to a change of the
turbulent flow properties occurring at large Ra either within the bulk or close to
the lateral walls. The major physical phenomenon influencing such a behaviour is the
formation of large-scale vortical structures generating a mean flow. It is commonly
assumed that, provided Γ is not too small, the large-scale structure typical length
scale is of the order of the cell height, thus introducing constant ‘winds’ sweeping
the plates and generating viscous and thermal boundary layers. The presence of
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large-scale structures has therefore important practical and theoretical implications
because Nu, and therefore the overall heat exchange properties of the flow, is directly
linked to the thermal boundary layer thickness and nature (laminar or turbulent).

The above discussion explains the interest in clarifying the nature of the large-scale
vortical structures forming within the cell at large Ra. The assumption of a mean
current close to the wall is the basis of the recent theoretical works by Grossmann
& Lohse (2000, 2001) where a phase diagram in the (Ra, P r)-plane is proposed. The
different flow regimes correspond to various power laws or to a combination of them.
The presence of a ‘wind’ sweeping the walls is postulated and it is argued that different
regimes might occur depending on the relative weight of the viscous or temperature
dissipation either in the bulk or in the wall region. The agreement between the
theoretical predictions and the experimental results seems good concerning global
quantities but the physical properties of the large-scale structures associated with the
various regimes actually unclear. Previous numerical simulations (Camussi & Verzicco
1999) have shown that a large-scale recirculating structure filling the whole volume
is indeed present in the case of a Γ = 1 cell. It is suggested by the experiments of
Ciliberto, Cioni & Laroche (1996) that the large-scale flow does not have an influence
in the regime characterized by β = 2/7. On the other hand, the recent work by Daya
& Ecke (2001) clearly indicates that the large-scale structure topology depends on
the cell geometry, which weakly influences the Nu vs. Ra dependence but strongly
affects the statistics in the bulk. At Ra� 107, various experimental results, even
though still contradictory, seem to suggest that the large-scale structures play a key
role in defining different flow regimes. For Ra > 1010 approximately, a transitional
regime has been observed experimentally by Chavanne et al. (2001) in a Γ = 0.5
cell. It is argued that the large-scale mean flow induces a transition in the boundary
layer from a laminar to a turbulent state. Such a transition is also suggested by
Chavanne et al. (2001) and Roche et al. (2001) to theoretically justify the ultimate
regime Nu ∼ Ra0.5 observed at very large Ra (Ra > 1012) and predicted decades ago
by Kraichnan (1962). Other results however seem to contradict such conclusions. As
examples, the early experiments at very large Ra by Wu et al. (1990) and the more
recent investigations by Glazier et al. (1999) and Ashkenazi & Steinberg (1999) do not
exhibit a clear transition for Ra > 1010. The absence of a transition is also confirmed
by the experiments of Niemela et al. (2000), which cover a wide range of Ra (up to
Ra = 1017), the only difference with the experiment of Chavanne et al. (2001) being
the size of the cell.

The contradictory results of these experiments shows that a physical picture of the
large-scale structure properties in the very high Ra convective regime at large Pr is
still far from clear. Indeed, the analysis of indirect experimental results pertaining
the large-scale motion leads to different possible interpretations of the large-scale
flow behaviour and to contradicting theoretical implications. The present work is an
attempt to shed some light on this by a numerical simulation of the high-Ra regime
in a Γ = 0.5 cell at Pr = 0.7. The main aim is to numerically replicate the above cited
recent experiments by Chavanne et al. (2001) and Niemela et al. (2000) which even
though adopting the same non-dimensional parameters (namely Γ and Pr), show
different results. The three-dimensional direct numerical simulation provides physical
insights correlated with the topology of the large-scale structures, and information
on quantities of interest which cannot be measured by experiments (e.g. vorticity,
temperature and velocity three-dimensional fields). The range of Ra analysed here,
2× 106 6 Ra 6 2× 1011, is sufficiently wide to examine the occurrence of a flow
transition which is tracked either by the analysis of the three-dimensional fields and
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of the boundary layers or by point-wise temperature and velocity temporal statistics
obtained by non-intrusive numerical probes placed within the bulk and close to the
walls. Global quantities, such as energy and temperature dissipation computed either
in the bulk or within the wall region and the most relevant turbulence quantities,
are also analysed and discussed within the framework of the most recent theoretical
developments (in particular those by Grossmann & Lohse 2000). We wish to stress
that the present work covers a range of Ra which, as far as we know, has never been
reached in previous direct numerical simulations. However, numerical capabilities
leave the study of the ultimate regime observed by Chavanne et al. (2001) at Ra� 1011

still unaffordable and further analysis on this remains a task for future experimental
works. The large Ra analysed in the present work poses strong resolution requirements
to be satisfied in the numerical simulation and the details of the numerical approach
adopted are given in the next section. Results are presented in § 3 covering the
description and discussion of the mean flow character and of the thermal and viscous
boundary layer properties. The analysis of the core turbulence properties and of
relevant statistics computed from the numerical probes are also included in § 3. Final
remarks and conclusions are given in § 4.

2. Numerical set-up
The flow investigated in this paper is that developing in a cylindrical cell of aspect

ratio Γ = d/h = 1/2 heated from below and cooled from above with an adiabatic
sidewall. All the surfaces are no-slip. This configuration replicates the experimental
set-ups of Chavanne et al. (2001), Niemela et al. (2000) and Roche et al. (2001) that
used gaseous helium close to the critical point as working fluid.

A sketch of the set-up is given in figure 1 where the positions of ‘ideal probes’ are
indicated by circles; 20 azimuthally equi-spaced probes are located on each circle and
these are ideal in the sense that they provide simultaneous point-wise measurements
of temperature and of the three velocity and vorticity components. They are also ideal
since their presence does not disturb the flow even though they are about 400. The
output of each probe consists of time series of the sampled quantities (see figure 2)
that are analysed in the same way as in the experiments.

The flow is solved by numerically integrating the three-dimensional unsteady
Navier–Stokes equations with the Boussinesq approximation:

Du

Dt
= −∇p+ θx̂+

(
Pr

Ra

)1/2

∇2u, ∇ · u = 0,

Dθ

Dt
=

1

(PrRa)1/2
∇2θ,

with x̂ the unity vector pointing in the opposite direction to gravity, u the velocity
vector, p the pressure (separated from its hydrostatic contribution) and θ the non-
dimensional temperature. The equations have been made non-dimensional using the
free-fall velocity U =

√
gα∆h, the distance between hot and cold plates h and their

temperature difference ∆ = Th − Tc; the non-dimensional temperature θ is defined
θ = (T − Tc)/∆ so that 0 6 θ 6 1.

The above equations have been written in a cylindrical coordinate frame and
discretized on a staggered mesh by central second-order accurate finite-difference ap-
proximations; the resulting discretized system is solved by a fractional-step procedure
with the elliptic equation inverted using trigonometric expansions in the azimuthal
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Figure 1. Sketch of the cell. All the surfaces are no-slip and the working fluid has Pr = 0.7.
On each circle there are 20 azimuthally equi-spaced numerical probes.
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Figure 2. Example of the output of a numerical probe located halfway down the cell at x/h = 0.5
and r/h = 0.0625; Ra = 2× 1010.
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direction and the fishpack package (Swartzrauber 1974) for the other two directions.
The time advancement of the solution is obtained by a hybrid low-storage third-order
Runge–Kutta scheme. The numerical method is the same as that described in Ver-
zicco & Camussi (1997) and Verzicco & Orlandi (1996) where further details of the
numerical procedure can be found. The only relevant change with respect to the pre-
vious code is the presence of openMP directives allowing the use of multi-processor
shared-memory computers.

The set of numerical experiments consists of six simulations at Pr = 0.7 and Ra
in the range 2 × 106–2 × 1011. The highest values of Ra may be beyond the present
computing capabilities for a direct numerical simulation and a discussion of the
resolution requirements is necessary in order to assess the quality of the results.

When performing a direct numerical simulation it must be ensured that the mesh
size is of the same order (possibly equal or smaller) as the smallest flow scale η
(the Kolmogorov scale) and, in the presence of solid surfaces, the viscous boundary
layers must be adequately resolved. This means that within the boundary layer
thickness δu a minimum number of gridpoints must be clustered and this condition
is usually more restrictive than the previous one. The temperature field has similar
resolution requirements with ηT (the Batchelor scale) and δθ (the thermal boundary
layer thickness) instead of the viscous quantities. The above constrains must be
satisfied simultaneously and therefore the most restrictive must be assumed. Usually
the limitations on η and δ occur in different flow regions (the former in the bulk and
the latter close to solid walls) therefore the use of a non-uniform grid is desirable.
Accordingly, in this study the grid is non-uniform in the vertical and radial directions
with the cells clustered close to the horizontal plates and close to the vertical sidewall
in order to properly resolve the thermal and viscous boundary layers; in both cases
the stretching function is an hyperbolic tangent.

For Pr 6 1 flows η 6 ηT and according to Grötzbach (1983) a reasonable estimate
for the Kolmogorov scale is η/h ' π(Pr2/RaNu)(1/4) which, combined with an appro-
priate correlation for the Nusselt number readily yields an estimate for η. Although
the results by Chavanne et al. (2001) and Niemela et al. (2000) do not agree perfectly
for all the values of Ra, the relation Nu ' 0.124Ra0.309 fits the data reasonably well in
the range of our interest and it is sufficiently accurate for our purposes. This fit has
been used to compute the value of η and the results are given in table 1 together with
the mesh size for comparison. In addition, since we are performing three-dimensional
numerical simulations we can compute the kinetic energy dissipation rate ε from
which the Kolmogorov scale can be directly computed by η = (ν3/ε)(1/4); these values
are also reported in table 1 for comparison. Note that the quality of the resolution
is not always the same and that for the highest values of Ra the maximum grid size
is slightly larger than η. This is because of the limited computing power; however
that this resolution was enough to give accurate results was shown by grid refinement
checks as discussed at the end of this section.

It is worth noting that since the energy dissipation rate ε =
√
Pr/Ra|∇u|2 is a

function of the vertical coordinate x, η will also depend on x. As will be shown in a
later section, η is approximately constant in the bulk of the flow and decreases within
the boundary layers. Inside the boundary layers, however, the resolution requirements
based on their thickness is more restrictive than that required by η. As a consequence
η will be evaluated halfway between the plates (x/h = 0.5), being representative of the
resolution requirement in the bulk. Similar arguments and the same conclusions apply
to the Batchelor scale ηθ the temperature variance dissipation N =

√
1/(PrRa)|∇θ|2

and the thermal boundary layer thickness. We wish to stress that in this context
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η/h η/h δθ/h δθ/h
Ra estim. comp. estim. comp. Nθ ×Nr ×Nx ∆min ∆max

2× 106 0.038 0.0392 0.0455 0.0312 65× 49× 129 0.0039 0.0078
2× 107 0.018 0.0185 0.0223 0.0163 97× 49× 193 0.0010 0.0076
2× 108 0.009 0.0088 0.0109 0.0090 97× 49× 193 0.0010 0.0076
2× 109 0.0040 0.0039 0.0054 0.0050 129× 65× 257 0.0008 0.0057
2× 1010 0.0018 0.0019 0.0026 0.0018 129× 97× 385 0.00027 0.0048
2× 1011 0.0009 0.0010 0.0013 0.0011 193× 129× 513 0.00014 0.0036

Table 1. Variation of the Kolmogorov scale and thermal boundary layer thickness with Rayleigh
number; ‘estim.’ are the values obtained by a priori estimates, ‘comp.’ are the values computed
by the simulation. The minimum and maximum cell sizes are also reported in order to show the
adequacy of the spatial resolution.
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Figure 3. Comparison of the Nusselt number with the scaled dissipations as a verification of the

consistency relations: ×, 〈N〉√RaPr; +, 〈ε〉√RaPr + 1; �, Nu.

ε and N are the local dissipations only averaged in time and in the azimuthal
direction; these are different from their global counterparts 〈ε〉 and 〈N〉 averaged in
time and over the whole fluid volume. The latter must satisfy the consistency relations
〈ε〉 = (Nu − 1)/

√
RaPr and 〈N〉 = Nu/

√
RaPr which have been verified in figure 3

as a further validation of the numerical results.
Concerning the boundary layer thickness, δu and δθ decrease with Ra at different

rates and for Pr = 0.7 a cross-over can occur in Γ = 1 cells (Verzicco & Camussi
1999). However, for the present flow configuration (Γ = 0.5) δθ < δu and the former
can be safely estimated by δθ ' h/2Nu. This means that the total temperature differ-
ence ∆ is supported totally by the two thermal boundary layers while the temperature
in the bulk is approximately uniform and equal to (Th + Tc)/2. This estimate for δθ
was used a priori to cluster the gridpoints in the boundary layer; a minimum number
of six cells within the thermal boundary layer with the first gridpoint around δθ/8 was
found to give accurate results without wasting computational resources. Of course,
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we also used the data of the simulation to measure δθ and δu directly and to check
a posteriori the resolution; these data are reported in table 1.

Two objections could be made to the above arguments: the first is that the estimates
for η and δθ are only based on order-of-magnitude reasoning and there might be
numerical prefactors changing their effective values; second, if a numerical simulation
is under-resolved, the results for η and δθ are wrong, and therefore comparing these
values with the estimates might give the misleading impression that the simulation is
resolved.

Indeed the only truly reliable test to assess the quality of the results is a grid
refinement check in which a flow is simulated with different grids and the results are
checked against each other. On the other hand the simulations at the highest values
of Ra already stretched our available computing capabilities and simulations on finer
grids were not possible.

As a compromise we selected a case that could be simulated on over-resolved
meshes and by systematically reducing the grid the minimum resolution requirements
were identified. This was done by comparing the Nusselt number since Grötzbach
(1983) suggests that this quantity is the most sensitive to the spatial resolution. The
reference simulation is that of table 1 (case 2) at Ra = 2×107 with the grid in the bulk
2.4 times smaller than the Kolmogorov scale, 10 gridpoints in the thermal boundary
layer and the first point at δθ/16. For this case Nu = 20.24 ± 1.42 while the value
Nu = 20.56 ± 1.48 was obtained on a grid with 5 points in the thermal boundary
layer with the first point at δθ/8 and the mesh in the bulk four times larger than the
Kolmogorov scale. Although whenever possible more-refined simulations were run,
the above criteria have been fixed as minimum resolution requirement. The fact that
a simulation with the mesh size four times η can still give accurate results is not very
surprising when considering that, as mentioned by Pope (2000), η underestimates the
size of the dissipative motions by more than a factor two and, according to Monin &
Yaglom (1975), the transition separating the inertial range from the dissipative range
occurs at about 10η.

A further indirect possibility for checking the adequacy of the numerical resolution
is by computing the velocity and temperature spectra and verifying that in the
dissipative range they decay exponentially without any build-up at the smallest scales
(Jiménez et al. 1993). The correct behaviour of the spectra will be shown in § 3.4
where a comparison for the highest Ra is performed with experimentally measured
analogous quantities (J. Niemela, personal communication).

An additional indirect way to assess the grid resolution is by computing the Nus-
selt number using different expressions. Resorting to the conductive and convective
heat transfer definitions one can write Nu = 1 +

√
RaPr〈uxθ〉 (Kerr 1996) where the

angular brackets indicate an average over time and over the whole fluid layer. The
Nusselt number can also be evaluated by computing directly the mean heat flux at the

hot and cold plates Nu = ∂θ/∂x|w where |w indicates that the derivative is evaluated
at the wall and the overbar implies an average in time and over the plate surface.
This latter definition requires an adequate spatial resolution of the thermal boundary
layer while the former expression needs a correct estimation of the fluctuations in
the bulk in order to evaluate the correlation uxθ. From preliminary simulations we
observed that the values yielded by the two definitions agree only when the flow is
well resolved either in the bulk or in the boundary layers therefore in each simulation
this criterion was always used: the two Nusselt numbers were computed and each
run was continued until the two definitions converged to the same value.
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Figure 4. Time evolution of the Nusselt number according to the different definitions at Pr = 0.7,
Ra = 2× 1011: , integral in the bulk; · · · · · ·, , heat fluxes at the lower and upper plates.

As an aside we note that the long-term convergence of the first definition of Nu is
due to the large-scale fluctuation of the mean temperature in the bulk which occurs
on the same time scale as the integral quantities. This also provided a criterion to
decide on the duration of each simulation since analogous statistics for turbulent
quantities had to be computed (see figure 4). We wish to stress that this criterion
prescribes that the duration of each simulation, in terms of large-eddy-turnover
times TL, is increased when the Rayleigh number is increased. In the present study,
assuming a fluid particle to revolve inside the cell at a speed of the order of the
free-fall velocity (U =

√
gα∆h) along an elliptic path, we can estimate TL ' 2h/U

yielding a simulation time of Ttot = 100TL, 100TL, 100TL, 130TL, 165TL and 220TL,
respectively at Ra = 2× 106, 2× 107, 2× 108, 2× 109, 2× 1010 and 2× 1011. All the
statistical quantities averaged over such a large number of large-scale characteristic
times can be considered converged also on account of the fact that only mean and
r.m.s. quantities are investigated in this paper. Nevertheless, in Niemela et al. (2001)
it has been shown that TL is not the longest period in the flow since a ‘mean wind’
reversal is observed that at Ra = 1.5× 1011 occurs about every 2500 s. Even though
the phenomenon was observed in a Γ = 1 cylindrical cell it is certainly possible that
the same reversals are experienced by the flow in the Γ = 1/2 cell. In this respect the
numerical simulation is useless since for a cell of h = 50 cm (like that of Niemela et
al. 2001) filled with gaseous helium at T = 4.2 K and ρ = 0.605 Kg m−3, with the fluid
properties α = 0.238 K−1, ν = 2.1× 10−6 m2 s−1 and κ = 3.15×10−6 m2 s−1, it turns out
that at Ra = 2× 1011 a period of 220 large-eddy-turnover times corresponds to only
95.63 s. This implies that not every feature related to these reversals is captured by the
numerical simulation, nor, therefore, the effects of the reversals on the flow statistics.
It must be noted, however, that a recent paper by Sreenivasan, Bershadskii & Niemela
(2002), has shown that the sidewall conductivity plays a significant role in the mean
flow reversal through the thermal equilibrium of the corner eddies. In particular it was
shown that at Ra = 1.5× 1011 in a Γ = 1 cylindrical cell at Pr = 0.7 the mean wind
had two equally probable directions while for smaller values of Ra the mean wind
had a preferred state. In contrast, by reducing the sidewall conductivity the threshold
value of Ra for the equi-probability of the two recirculation directions increased. Since
in this paper the sidewall is perfectly adiabatic we expect, in the limited evolution
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period which we could simulate, the mean wind to remain essentially in one direction
even at the highest Rayleigh number (2× 1011).

Before concluding this section we note that the high-Ra conditions attained in this
study are mainly due to the particular geometry of the domain. Given the low aspect
ratio of the cell, the fluid volume contained in the domain is V = hπd2/4 ' 0.196h3;
in contrast in a truly Rayleigh–Bénard problem, in which the horizontal dimensions
of the domain are at least l = 4h–6h (Kerr 1996) the flow volume would be V = l2h =
16h3–36h3 and maintaining the same resolution as in this study would be impossible
in practice.

3. Results
3.1. The mean flow

An important feature of this flow is the presence of large-scale structures whose char-
acterization is important owing to the possible induction of constant ‘winds’ sweeping
the plates and producing viscous and thermal boundary layers. The identification of
the large-scale motion is also important because in laboratory experiments, owing
to technical difficulties in the velocity measurements, these structures are conjectured
from indirect evidence, such as correlating signals from two neighbouring temperature
probes. Direct velocity measurements, on the other hand, are necessary in order to
assess the existence of the postulated structure, to evaluate its strength and to separate
the mean flow from velocity fluctuations.

A first simple way to detect the presence of the mean flow is by instantaneous
flow visualizations like those of figures 5–7 where we report vertical and horizontal
sections of temperature and vertical velocity for different Rayleigh numbers.

In many experimental analyses, assuming an analogy with the flow in the Γ = 1
cylindrical cell (for which a large body of literature is available), the presence of
a unique large-scale recirculation completely filling the cell has been assumed and
the velocity distribution induced by this structure used to interpret the temperature
measurements.

From the panels of figures 5–7 we can see that the scenario is considerably more
complex, with a mean flow structure which depends on the Rayleigh number and the
unique large-scale recirculation which only appears for the lower values of Rayleigh
number with limited intensity. The mean flow consists, in fact, of the superposition
of two counter-rotating toroidal rings attached to the horizontal plates and the large-
scale recirculation (figure 8a). The rings are axisymmetric and cause the fluid at the hot
(cold) plate to raise (descend) along the lateral wall and to descend (raise) at the cell
axis. This motion induces boundary layers which are thinnest at the centre of the
plate and thicken in the radial direction. In contrast, the big roll with its asymmetric
velocity field sweeps the horizontal plates in a single direction, inducing boundary
layers that thicken monotonically while spanning the plates across the cross-section
aligned with the mean current.

The overall features of the mean flow are determined by the relative importance of
the two structures through the formation of the boundary layers. We have observed
that for the lowest values of Ra the axisymmetric toroidal rings dominate the wall
regions with the asymmetric large roll only playing a role in the bulk by generat-
ing a hot rising current on one side of the cell and a cold descending counterpart
on the other side. In the range 109 < Ra < 1010 a transition occurs such that the
axisymmetric torii weaken and the large-scale elliptical recirculation breaks into two
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(a)

(b) (c)

Figure 5. Instantaneous snapshots of temperature (a) in a vertical plane through the diameter
and (b) in a horizontal plane midway between the plates; ∆θ = 5× 10−3: , 0 6 θ < 0.5;
· · · · · ·, 0.5 > θ > 1; , θ = 0.5. (c) As (b) but for the vertical velocity component; ∆u = ±0.05:

, 0 < u 6 0.55; · · · · · ·, −0.55 6 u < 0; , u = 0. Pr = 0.7, Ra = 2× 107.

(a)

(b) (c)

Figure 6. As figure 5 but for Ra = 2× 109.

unit-aspect-ratio counter-rotating recirculation rolls (figure 8b). These latter struc-
tures, sweeping the horizontal plates with constant currents, induce boundary layers
different from those produced by the toroidal rings: this point will be quantitatively
addressed in the next section. Another important effect of the counter-rotating rolls
is that, acting like two counter-rotating flywheels, they bring into contact the fluid
transported from the hot and cold plates at the cell centre thus producing a tem-
perature jump in the bulk which affects the flow dynamics. This phenomenon has
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(a)

(b) (c)

Figure 7. As figure 5 but for Ra = 2× 1011.

(a) (b)

Figure 8. Sketch of the mean flow arrangement: (a) configuration for Ra < 2× 109,
(b) Ra > 2× 109: , for the most intense structure; , for the weaker structure.

important implications for the decay of temperature and velocity spectra and will be
discussed in § 3.4.

We wish to stress that the mean flow dynamics discussed above might appear impos-
sible to conjecture from figures 5–7 since a single flow configuration does not provide
enough information. In fact, the flow structure for every range of Rayleigh number
has been deduced from the analysis of many snapshots of velocity and temperature
fields together with animations in horizontal and vertical planes. Note, however, that
the behaviours described only occur on the average since the largest scales experience
reversals and azimuthal tilting with a statistical period of the order of 10–20 large-
eddy-turnover times. In addition in the range Ra = 2× 109–2× 1010 the two flow
regimes described can co-exist with the large recirculation that randomly switches
between the single-roll and counter-rotating-couple configuration. The dynamics
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Figure 9. Mean wall-normalized velocity gradients: (a) radial profiles at the horizontal plate (the
profiles are averaged in time and between the lower and upper plates), (b) vertical profiles at the
sidewall (the profiles are averaged in time and in the azimuthal direction). , Ra = 2 × 1011;
– – – –, Ra = 2 × 1010; - - - -, Ra = 2 × 109; · · · · · ·, Ra = 2 × 108; , Ra = 2 × 107; unless
otherwise specified, the same line style has been used throughout the paper.

described is confirmed by the local friction coefficient profiles of figure 9 computed
as the normalized (by 1/Re =

√
Pr/Ra) wall-normal derivative of the tangential vel-

ocity. In particular, figure 9(a) shows the peak induced on the horizontal plate by the
axisymmetric rings with amplitude that decreases with Ra, while at the highest values
of Ra a constant value is observed as the signature of the more uniform wind induced
by the asymmetric rolls (see figure 8). Similar information is obtained from figure 9(b)
showing the profiles along the sidewalls; in this case also the peaks produced by the
rings are evident before the transition and they tend to disappear for Ra > 1010.

A more quantitative way of characterizing the mean flow is by determining its
energy content. In particular, by taking a Fourier transform of the velocity field
it is possible to decompose it into azimuthal modes n and then to compute the
energy of each mode. Namely, if u(r, θ, x) is the velocity field, taking the FFT in
the azimuthal direction results in û(r, n, x), with n the azimuthal wavenumber; the
azimuthal energy modes are then obtained by integrating û(r, n, x)û∗(r, n, x) over r and
x, for each wavenumber n, û∗ being the complex conjugate of û. This decomposition is
particularly significant since the n = 0 mode corresponds to the axisymmetric toroidal
structures, the n = 1 mode contains the energy of the large-scale structures spanning
the cell, while the n > 2 mode are the structures with n-fold azimuthal symmetry. In
figure 10 we report the time evolution of the first ten energy modes for three Rayleigh
numbers where we can see that even though the values fluctuate in time they attain
stable mean values. It is worth noting that, owing to the polar-cylindrical frame of
reference, every off-axis structure will also contain energy in the n = 1 mode; therefore
its energy content can be ascribed not only to the large-scale recirculations but also
to other asymmetric structures. In fact, in figure 10(a) we note that at Ra = 2× 107

the n = 0 and n = 1 modes have comparable energy and, since the velocity field
is essentially dominated by the axisymmetric rings (figure 5), we can argue that the
energy in the n = 1 mode is due to the background structures.

From the plots of figure 10 we extracted the percentage of energy contained in the
n = 0 and n = 1 modes as a function of Ra and the results are reported in figure 11.
We can see that at Ra = 2× 107 the energy content of the axisymmetric mode is the
highest and it decreases to Ra = 2× 109 when it attains a steady value. On the other
hand, the energy in the mode n = 1 increases with Ra up to Ra = 2× 1010 and then
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Figure 10. Time evolution of the azimuthal energy modes: (a) Ra = 2 × 107, (b) Ra = 2 × 109,
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Figure 11. Percentage of the total kinetic energy contained by the n = 0 and n = 1 modes
as a function of Ra.

saturates. This behaviour reinforces the picture of toroidal rings which weaken and
asymmetric rolls which reinforce with Ra with a transition occurring in the range
109 < Ra < 1010. This is further confirmed by the behaviour of the averaged (in time)
maximum vertical velocity with Ra (figure 12) showing an increase up to Ra = 2×1010

and then a constant value. We report for comparison the same data from Verzicco
& Camussi (1999) who simulated the same flow in a Γ = 1 cylindrical cell; in that
case only one single large-scale roll (without the toroidal rings) was observed with a
circulation increasing with Ra. From the comparison it is immediately evident that
in the present Γ = 1/2 cell the vertical velocity is smaller than that in the bigger
aspect ratio cell. This is partly due to the dissipative effect of the lateral wall which is
larger with respect to the cell volume in the smaller aspect ratio cell. Another reason
for this difference is the topology of the mean flow. In the bigger aspect ratio cell,
the unique large-scale roll allows the buoyancy forces to accelerate the fluid particle
along the whole cell height (h). In contrast, in the high Rayleigh number regime, for
the smaller aspect ratio cell the presence of two rolls halves this accelerating distance
yielding smaller peak velocities.

The vertical profiles of the mean vertical velocity and temperature at the axis of the
cell are reported in figure 13. The vertical velocity profiles (figure 13a) further confirm
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Figure 13. Mean vertical profiles of (a) vertical velocity and (b) temperature at the axis (r = 0): —–,
Ra = 2× 1011; – – – –, Ra = 2× 1010; - - - -, Ra = 2× 109; · · · · ·, Ra = 2× 108; — ·—, Ra = 2× 107.
(c) A zoom of the upper thermal boundary layer with the spatial distribution of the gridpoints.

the presence of a transition in the mean flow configuration around Ra = 2× 109. In
fact at Ra = 2×107 the vertical velocity at the axis is negative for x 6 h/2 and positive
for x > h/2, a clear signature of the axisymmetric rings (see figure 8a). As the Rayleigh
number is increased the velocity magnitude decreases since the ring intensity decreases
as well while the asymmetric single cell gives zero vertical velocity at the axis. For the
highest values of Ra the asymmetric cells dominate the mean flow and, accordingly, the
vertical velocity attains its minimum value close to the plates and it is zero at the centre
of the cell. The profiles reported in figure 13(b) clearly show that the temperature
remains about constant within the bulk while the temperature gradients are effective
only within the thermal boundary layer (close up view is shown in figure 13c).

3.2. Boundary layers

The change in the features of the mean flow are also reflected in the dynamics of
the boundary layers. In figure 14 we show the averaged r.m.s. vertical profiles of
horizontal velocity and temperature which have peaks in the region close to the walls
and a ‘constant’ value in the bulk of the flow. Assuming the distance of the peak
r.m.s. from the wall as the boundary layer thickness we computed this value for the
viscous and thermal layers and the results are given in figure 15. We can see that while
the thermal boundary layer thickness steadily decreases with Ra with only a small
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Figure 14. The same figure 13 but for the r.m.s. profiles. Panels (c) and (d ) are enlargements of
the lower wall regions with the gridpoint distribution.

bump around Ra = 2 × 109, the viscous boundary layer also decreases but not with
a constant slope, showing a clear thickening produced by the different mean flow.
It is also observed that the thermal boundary layer thickness is always smaller than
the viscous one and no cross-over is observed, in contrast with previous observations
for Γ = 1 cells (Verzicco & Camussi 1999). We wish to stress that the transition
mentioned is observed for the highest two Ra and therefore the possibility that this is
a temporary change associated with the formation of the new structures and that at
larger Ra the former scaling could appear again, cannot be ruled out.

Indirect experimental evaluations of the viscous boundary layer thickness also
showed an evolution with Ra similar to the present one (see figure 4 of Belmonte,
Tilgner & Libchaber 1994) and the observed behaviour was interpreted as an effect
of a transition from a laminar to a turbulent regime (Belmonte et al. 1994; Chavanne
et al. 2001). As further evidence of this transition NuRa/(Pr2Re3) was evaluated as
a surrogate of the friction coefficient Cf on the plates in order to show the different
slope of Cf vs. Re pertaining to the laminar and turbulent regimes.

The analogy between the quantities Cf andNuRa/(Pr2Re3) was obtained as follows:
a uniform current with velocity U sweeping a flat plate of surface S exerts a force
F = ρU2SCf/2 with a power P = FU. On the other hand, in the Rayleigh–Bénard
cell the dissipated power is P ′ = ρV 〈2νSijSij〉 = ρV 〈ε〉 = ρVν(Nu − 1)Rak2/h4 '
ρVNuRaνk2/h4, V being the volume of the cell. Assuming that all the dissipation in
the cell occurs within the viscous boundary layers, by equating P and P ′ we obtain

Cf = NuRa

(
k

ν

)2
ν3

U3h3
=

NuRa

Pr2Re3
. (3.1)
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This quantity was computed using the data of the direct numerical simulation and
compared with the friction coefficient Cf directly evaluated from the velocity gradients
at the solid walls. It is important to note that, since P ′ denotes the power dissipated
by the whole flow, Cf must be computed by averaging its value over all solid

surfaces, including the sidewall. In figure 16(b) Cf is plotted using open symbols and
the analogous quantity computed only on the horizontal plates is also reported for
comparison.

It can be noted that the surrogate friction coefficient (figure 16a) indeed shows
a change in the slope and the ‘knee’ occurs at Re ' 7000 which is the same value
observed by Chavanne et al. (2001). The actual friction coefficient Cf , in contrast,
decreases with Re, eventually following a power law Re−1/2 which is characteristic of
the laminar boundary layers. The friction coefficient averaged only on the horizontal
plates starts decreasing as Re−1/2 but it exhibits a ‘dislocation’ around Ra = 2 × 109

and then decreases with the same slope as in the low Reynolds number region. It must
be observed that given the limited number of points before and after the transition
the equal slopes might be coincidental; nevertheless the important observation is that
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Figure 17. Sketch of the boundary layer/bulk region separation for (a) kinetic energy dissipation
rate ε and (b) temperature variance dissipation rate N.

in this case the transition also is observed and that the friction coefficient continues to
decrease with Re and does not attain a constant value like Cf . This indicates that the
boundary layers remain laminar for this range of Rayleigh number and the absence
of a transition is also confirmed by the r.m.s. profiles of figure 14 whose peak values
are independent of the Rayleigh number. In fact, if a laminar/turbulent transition
had indeed occurred within this regime an increase either in the velocity or in the
temperature fluctuations should be observed.

We believe that the reason for the misleading behaviour of the surrogate Cf is that
its definition relies on the key assumption that all the energy dissipated in the cell
must be dissipated inside the viscous boundary layers.

In order for this point to be further clarified, the thermal and viscous dissipations
have been computed from the spatial gradients of the three-dimensional velocity and
temperature fields and the contributions coming from the bulk have been separated
from those coming from the boundary layer regions. Since all the surfaces are no-slip,
the boundary layer region for the kinetic energy dissipation rate ε includes the plates
and the sidewall, whose boundary layer thickness is different from that of the plates
(figure 17a). In contrast, owing to the adiabatic condition on the lateral wall the
boundary layer region for the temperature variance dissipation rate N is only that
coming from the horizontal plates (figure 17b). This is consistent with the distinction
proposed by Grossmann & Lohse (2001) whose theory will be briefly compared with
the present findings in the Conclusions.

The percentages of kinetic energy and temperature variance dissipation rates are
reported in figure 18 as functions of Ra. It is shown that as the Rayleigh number is
increased, the contribution to the dissipation from the bulk becomes dominant, thus
contradicting the results of figure 14(a) based on the idea that the energy is entirely
dissipated at the walls. It is also worth noting that, while for the temperature variance
dissipation the boundary layers are only close to the horizontal plates, the velocity
field also has a boundary layer in the lateral wall of the cell.
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From the spatial distribution of the dissipation, we have also computed the vertical
profiles at the axis (r = 0) which are given in figure 19. Another important feature is
the difference of values in the bulk and in the boundary layers for ε and N. Although
ε attains the largest values in the boundary layer, the dissipation in the bulk is not
negligible; thus, given the small volume of fluid of the boundary layers the bulk
dissipation dominates (figure 19a). In contrast, for the temperature, N in the bulk is
a negligible fraction of the wall value and essentially all the N is produced within the
thermal boundary layers (figure 19b).
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It must be noted that the separation of the dissipation contributions into bulk and
boundary layer relies heavily on the boundary layer thickness definition; therefore
the percentage values of figure 18 should be considered as indicative. Nevertheless,
as noted in Kerr (1996, 2001) the thicknesses computed from the r.m.s. peaks show
the slowest decrease with Ra, thus confirming that plots such as in figure 18 based
on different boundary layer thickness definitions would give the same trends.

In figure 20 we report the non-dimensional heat transfer as a function of Rayleigh
number with some experimental results for comparison. The data reported in fig-
ure 20(a) show that there is a substantial agreement with the experiments and that
a clear change of slope in the Nusselt vs. Ra relation cannot be detected. However,
when the Nusselt number is plotted in a compensated form (figure 20b) the slope
before and after Ra = 2 × 109 seems to change from the expected 2/7 scaling to
1/3 for Ra > 109. Nevertheless, given the error bars and the relatively limited (with
respect to the experimental studies) Rayleigh number spanned by the simulations the
above results have to be viewed with care and have only qualitative meaning. We
wish to stress, however, that the error bars in figure 20 have been computed from the
r.m.s. of the Nu fluctuations evaluated in the bulk (see figure 4) and they are of the
order of 10%. On the other hand, in § 2 we have seen that at Ra = 2 × 107 when
the resolution in the thermal boundary layer is decreased from 10 to 5 points Nu
increases only by 1.2%. This suggests that if for a halved resolution the error doubled
or even quadrupled it would be still of the order of 5% and therefore not large
enough to induce a change of scaling. In addition, the simulations at Ra = 2 × 1010

and Ra = 2× 1011 were indeed both resolved with 5 points in the thermal boundary
layer and the deviation of Nu from the power law Ra2/7 are of the order of 35% and
50%, respectively; therefore we tend to exclude the observed increased heat transfer
being caused by lack of numerical resolution. The same conclusion is achieved when
trying to distinguish between the power laws Ra−0.309 and Ra1/3; in fact by differen-
tiating logarithmically the Nu values for the three highest values of Ra the exponent
β = 0.338 is obtained while Nu at Ra = 2 × 1011 should be reduced by more than
13% to obtain the exponent β = 0.309.

3.3. Core turbulence

The flow region far from the solid walls (0.3h 6 x 6 0.7 and r 6 0.3Lr) is governed
by nearly isotropic fluctuations whose dynamics can be characterized by investigating
eventual scaling laws with Ra. Some representative scaling relations are reported in
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figure 21; the upper panels report the r.m.s. of velocity and temperature fluctuations
which have been obtained by averaging the three-dimensional data fields in the
azimuthal direction and in time over the flow region 0.4h 6 x 6 0.6h and r 6 0.08h.
When these quantities are plotted as function of Ra it is observed that u′ ∼ const.
even though, given the scatter of the data, a weak decrease with Ra cannot be ruled
out. For the r.m.s. of the temperature, in this case also the signature of the mean flow
transition is present with a ‘dislocation’ around Ra ' 109 and two regions with a
power law decrease close to θ′ ∼ Ra−1/7 which has already been found in experiments
by Wu (1991) and Niemela et al. (2000).

From the three-dimensional data fields the energy dissipation rate ε and the tem-
perature variance dissipation rate N have been computed using the spatial gradients
and the results are reported in figure 21(c, d ). According to the turbulent nature of the
flow one should expect ε ∼ (u′)3 ∼ const. and N ∼ u′(θ′)2 ∼ Ra−2/7, but only the
latter prediction is confirmed by the measurements. On the other hand, recalling
the definitions ε ≈ (u′)3/L and N ≈ u′(θ′)2/Lθ , with L and Lθ the integral and
temperature integral length scales, and relying on the results of figures 21(a) and
21(b), the above predictions can be correct providedL andLθ are constant with Ra.
Once again, only the latter prediction is confirmed while the scaling of ε indicates a
Ra-dependence of L; in particular, since ε decreases with the integral scale L must
increase with Ra.

Considering that an integral scale is a spatial dimension over which the phenomenon
is forced, the above results are not surprising; in fact the maximum temperature
difference is always at the distance between the plates and it is therefore reasonable
to expect Lθ ∼ h. In contrast the velocity integral scale L depends on the shape and
strength of the large-scale vortices in the flow. According to the analysis in § 3.1 it is
therefore reasonable that L increases with Ra since the large recirculations become
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dominant with respect to the smaller toroidal structures. It is important to note that
this behaviour cannot be asymptotic since an indefinite growth of L with Ra would
eventually lead to L > h which is physically meaningless; this suggests a saturation
in the increase of L to a fixed fraction of h corresponding to a saturation of the
dimension and intensity of the large-scale structures. This conjecture is indirectly
confirmed by the results of figure 12 where the averaged vertical velocity seems to
attain a limiting value for 2 × 109 6 Ra 6 2 × 1010. Indeed, without the value at
Ra = 2 × 1011 of figure 12 a different conclusion would be obtained, and therefore
this point should be taken with caution; nevertheless, if we assume that the flow at
aspect ratio Γ = 1/2 has the same behaviour as that at Γ = 1 a saturation in the
velocity value could occur as indicated by the data for the latter cell.

The analysis of the integral lengths in convective turbulence assumes a particular
relevance since there is a third quantity, the Bolgiano length, which introduces ad-
ditional turbulence dynamics. Briefly, in standard turbulence the energy is injected
at dimensions of the order of the integral scale and dissipated at the smallest (Kol-
mogorov) scales with only an inertial cascade in between. In convective turbulence, in
contrast, the correlation between vertical velocity and temperature fluctuations can
generate an additional energy injection at spatial scales of the order of LB which
is called the Bolgiano length. Of course, in order for this process to be physically
realizable, L >LB > η and Lθ >LB > ηθ must hold for velocity and temperature,
respectively.

The turbulent length scales have been computed from the dimensional estimates
L ≈ u′3/ε, Lθ ≈ θ′2u′/N and LB ≈ ε5/4/[(gα)3/4N3/4] by averaging in time, in
the azimuthal direction and over the radial distance 0 6 r 6 d/6, thus retaining
only the dependence on the vertical coordinate x. The values in the bulk (shown in
figure 22) have been obtained by vertically averaging the profiles over 0.4h 6 x 6 0.6h.
Although only qualitatively, the variation of the scales in terms of Ra supports the
above arguments on the variability limits of L and Lθ for increasing Ra. It is also
shown that even at the largest Ra attained in the present simulation LB is always
smaller than Lθ . As pointed out above, the interpretation of such results must be
taken with care due to the variability of the scales in space and, in particular, of
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LB . In fact, looking at figure 19 it is clear that both ε and N depend on the vertical
coordinate x and so do L, Lθ and LB . As an example, figure 23 reports the spatial
variation of the lengths with x for one value of Ra showing the possibility of switching
between Kolmogorov and Bolgiano dynamics depending on the distance from the
plates.

We have seen, however, that the largest variations are located close to the bound-
aries while homogeneous and isotropic conditions are attained only in the core region
where all the lengths are nearly constant. This allows the flow to be separated into
two regions, the first dominated by the wall dynamics or boundary layer region and
the second by developed turbulence or isotropic core region.

As a conclusion of this section it must be noted that the values of the scales L,
Lθ and LB , being obtained on dimensional grounds, only give order of magnitude
estimates while the exact values could be affected by numerical prefactors significantly
different from unity. Nevertheless, the important point is that, according to their
definitions, these lengths can evolve in a different way depending on the flow dynamics
and they do not need to be a fixed fraction of the distance h between the plates.

3.4. Frequency spectra and temperature structure functions

Further details on the turbulence dynamics are obtained by the analysis of the
frequency spectra computed by the Fourier decomposition of the time series sampled
by the numerical probes. As indicated in figure 1 the different locations of the probes
permitted us to analyse the bulk homogeneous region separately from the region of
flow close to the lateral walls. In figure 24 the temperature spectra obtained from time
series sampled within the homogeneous region at different Ra are reported. It is clearly
shown that for increasing Ra the number of excited frequencies broadens. Figure 24(a)
gives an indication that a fully turbulent state is already reached even at the lowest Ra
considered here and that no preferred frequency modes are observed to prevail. It is
also shown that for about Ra > 2×109 the spectral decay follows a power law which,
at Ra = 2× 1010, extends for about two decades. A comparison between temperature
and velocity spectra computed from the bulk probes at Ra = 2× 1010 is reported in
figure 25. Concerning the temperature behaviour (figure 25b), the reference power laws
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reported in the figure clearly demonstrate that the scaling exponent of the measured
spectrum is very close to −7/5. This result indicates that temperature fluctuations
follow the so-called Bolgiano dynamics according to which the velocity spectrum
should decrease with a −11/5 slope. However, a different behaviour is observed for
the velocity fluctuations (figure 25a) which instead are characterized by the typical
Kolmogorov scaling leading to a power law spectral decay with exponent −5/3. It
should be stressed that the three spectra reported in figure 25(a) are computed from
the three velocity components. The good collapse of the curves demonstrates that, as
expected, turbulence is isotropic in the bulk.

Our original interpretation of the observed scalings considered the direct estimation
of the integral and Bolgiano length scales characterizing temperature and velocity
fluctuations. As was shown in figure 22, at Ra ' 2× 1010 the result is L < LB and
Lθ > LB suggesting that the velocity spectrum follows the classical Kolmogorov
scaling and the temperature spectrum the Bolgiano dynamics. This is, however,
inconsistent with the Bolgiano argument since it is based on balancing u3/r ∼ gαθu
and uθ2/r ∼ N from which u ∼ r3/5 and θ ∼ r1/5 is obtained. In contrast a mixed
Kolmogorov–Bolgiano scaling for velocity and temperature would give u ∼ r1/3 and
θ ∼ r1/5 which, when substituted in the above relation for N yield uθ2/r ∼ N ∼ r−4/15;
this is inconsistent with the initial hypothesis of N independent of r. An alternative
explanation is that most of the thermal energy gαuθ is put into the largest scales
through the wind so that the little remaining thermal input does not disturb the
energy cascade which, therefore, follows the classical Kolmogorov scaling. According
to the early model proposed by Grossman & Lohse (1991), the energy flux towards
the small scales is constant and the observed Kolmogorov scaling of the velocity
spectra is consistent (D. Lohse, personal communication).

Different behaviours are observed at Ra larger than 2 × 1010. An example of the
temperature spectra obtained at Ra = 2×1011 both in the bulk and close to the lateral
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Figure 26. Comparison of the velocity and temperature spectra (a) in the bulk and
(b) close to the sidewalls at Ra = 2× 1011.

wall (halfway between the plates) is reported in figure 26. We note that due to the
larger number of virtual probes, the spectrum computed in the homogeneous region
is smoother than the non-homogeneous one, indicating a greater statistical accuracy.
This means that the high-frequency peaks observed in the ‘wall’ spectrum are spurious
effects related to the lack of statistical convergence. On comparing figure 26 with the
analogous results obtained at lower Ra, a broadening of the power law decay range
towards both low and large frequencies is seen. In the vicinity of the transitional
region between the inertial and the dissipative ranges, the generation of a ‘bump’ is
observed which appears to be more pronounced in the homogeneous region than in
the wall region. As noted in figure 26 the generation of the bump is sensed also by the
velocity fluctuation spectra. It is also evident that, independently from the presence of
the bump, velocity and temperature behaviours are still quite different and, according
to previous results at lower Ra, the first is dominated by the Kolmogorov dynamics
and the latter by the Bolgiano scaling, consistently with the results of figure 22. The
presence of a bump in the region separating the power law decay range from the
dissipative range has also been observed in experiments on convective turbulence.
Examples are reported in figures 27 and 28 where the spectra obtained from present
numerical simulation at Ra = 2×1011 are compared with experimental results obtained
in a cell geometry identical to the present one (J. Niemela, personal communication)
for Pr = 0.7 and Ra ' 1.6 × 1011. The presentation of the spectra in compensated
form (figures 27c, d and 28c, d ) makes clearer the presence of the bump both in the
homogeneous region in the bulk (figure 27) and close to the sidewalls (figure 28) and
the agreement between experiments and numerical results is fairly good.
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Analogous features are observed in the physical domain as found from the analysis
of the temperature structure functions computed from the present virtual probes.
More specifically, we computed the second-order temperature structure function,
defined as follows:

S2(τ) = 〈∆θ2(τ)〉 = 〈[θ(t+ τ)− θ(t)]2〉. (3.2)

The angle brackets denote an averaging procedure which is performed both in time
and by the ensemble average of the S2 resulting from the set of probes belonging to
the same region (bulk or wall). However, for clarity, the analysis of the time domain
features is limited to the bulk probes since the smaller amount of available data in
the wall region did not ensure a reliable estimation of S2.

Examples of results obtained at Ra = 2 × 1011 within the homogeneous region
are reported in figure 29. Panel 29(a) clearly shows the presence of a scaling law for
large time separations (low frequencies) and, according to the spectral results, the
scaling exponent in the time domain is very close to 0.4, thus leading to the observed
−7/5 = −1.4 exponent in the frequency domain. It is also observed that at very
small scale the temperature structure function follows a power law close to the form
S2(τ) ∼ τ2, indicating that the dissipative region has been well resolved by present
simulation even at the largest Ra considered here. Figure 29(b) corresponds to the
compensated structure function and in addition to confirming the Bolgiano scaling at
relatively large scales, also indicates the presence of the bump in the region separating
the Bolgiano scaling from the dissipation range.

It can be concluded that both numerical and experimental results clearly demon-
strate that the presence of the bump observed at very large Ra in the region of
frequency or time scales, which separates the power law range from the dissipation
region, is a signature of real physical effects.

The physical explanation of such a behaviour is not straightforward. One possibility
could be the occurrence of a ‘bottle-neck’ spectrum accumulation at small scales due
to the excitation of high frequencies whose energy is not dissipated efficiently. This
effect may be physically related to the presence in the mean flow of the two counter-
rotating convective cells which, by driving fluid from the hot and cold plates directly
into the cell centre, produce sharp temperature ‘cliffs’. Since, as suggested above,
temperature fluctuations are ‘active’ (and not driven by the velocity) they induce
analogous phenomena in the velocity fluctuations. This idea is supported by the fact
that the bump observed in the spectra presented above is much more evident in the
bulk region than within the region of flow close to the lateral walls.
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This scenario is further confirmed by the observation that a sharp cliff can be
roughly represented by a Heaviside function whose spectrum decays like f−1; this
slope is that found in figure 26 where both the velocity and the temperature bumps
are compared with a −1 exponent, showing a good agreement.

The main physical consequence of the above arguments is therefore that the
presence of well-defined convective structures at large Ra can have consequences on
the fluctuations in the bulk and on their spectra even at the smallest scales. This
confirms the idea that the cell aspect ratio is an important parameter for the flow
dynamics, not only concerning the large-scale features but also for the turbulence
dynamics.

4. Closing remarks
In this study we have replicated, by numerical experiments, the flow investigated

by Roche et al. (2001) and Niemela et al. (2000), sketched in figure 1. Taking
advantage of the data accessibility provided by the direct numerical simulation the flow
dynamics has been explored and separated into its mean large-scale and fluctuating
components, both in the bulk and in the boundary layer regions. The existence of
large-scale long-lived structures has been confirmed, although with a dynamics which
is different from that conjectured from laboratory experiments. In fact, the presence
of a single recirculation (similar to the Γ = 1 aspect-ratio flow) was observed only
for Ra < 109–1010 and, given its reduced intensity, had marginal influence on the flow
dynamics which, instead, was dominated by axisymmetric toroidal vortices attached to
the horizontal plates. On the other hand, the latter structures, for Ra > 1010, become
less important than the bulk recirculation which breaks up into two counter-rotating
asymmetric unity-aspect-ratio rolls. This transition has an appreciable impact on the
boundary layer structure, on the statistics of the bulk turbulence and on the global
heat transfer.

It is important to point out that the above feature is a peculiarity of this Γ = 1/2
aspect-ratio cell since a similar behaviour has not been observed by Verzicco &
Camussi (1999), Cioni, Ciliberto & Sommeria (1997), Castaing et al. (1989), among
many others, in Γ = 1 cells for a wide range of Rayleigh and Prandtl numbers. This
should not be surprising when considering that, as observed by Daya & Ecke (2001)
in Γ = 1 geometries, not only the aspect ratio (as shown in Kerr 2001), but also the
cell shape (in that case cubic or cylindrical) can influence the statistics in the bulk.

Keeping in mind that low-aspect-ratio cells behave differently from other geometries
we can briefly reconsider the results of the previous sections in the light of the
Grossmann & Lohse (2000, 2001) theory which classifies different flow regimes in
the Ra–Pr phase diagram in terms of the dominant contributions to the energy and
temperature variance dissipations from the bulk and the boundary layers; we report
in figure 30 their transitional map with the symbols indicating our set of simulations.
According to the diagram there is a transition between the dominant regimes IIl–IVl
with a possible further transition towards IVu for the last point.

Figure 18 confirms that a transition of the dominant contributions to the dissipation
indeed occurs even though it is not of the right kind. In fact, region IIl pertains to
flows with ε and N, respectively, coming essentially from the bulk and from boundary
layers and δu � δθ; in contrast, any point of region IV has both dissipations coming
from the bulk.

Concerning the boundary layers we note from figure 15 that δθ < δu always holds,
indicating a flow of the type IIu instead of IIl for Ra 6 109. This, however, is only
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a minor mismatch since, as noted by Grossmann & Lohse (2000) the separations
between the various regions should be considered more as indicative boundaries
rather than strict thresholds. Nevertheless, while the difference between IIu and IIl
could be easily remedied by shifting their boundary down, regions IV (with ε from the
bulk and N from the boundary layers) are eventually crossed according to figure 30
while for the present flow the region IIu seems to be asymptotic (see figures 15 and
18), at least before the appearance of the ultimate regime Nu ∼ Ra1/2.

We believe that one possible explanation is found in the structure of the large-scale
flow that, for this geometry, is not as simple as in larger-aspect-ratio cells. Indeed the
diagram reported in figure 28 had been calculated for Γ = 1 cells, thus considering
different structures of the large recirculation cells. In particular, we have shown that
the cell slenderness and the no-slip sidewall modifies the strength and topology of the
‘wind of turbulence’ thus changing the balance of the dissipations. As an aside we
note that the lateral no-slip adiabatic surface produces a viscous boundary layer while
no thermal boundary layer is developed. This further confirms that the dissipation
dynamics of figure 18 should not be attributed to the introduction of additional
boundary layers but rather to the large-scale confinement that is in turn reflected in
the boundary layer and bulk evolutions.

A confirmation of the aspect-ratio influence is given by the data of Verzicco &
Camussi (1999) simulating turbulent convection in a cylindrical cell of aspect ratio
Γ = 1 at Pr = 0.7. In that case, viscous and thermal boundary layer thicknesses were
found to decrease at a different rate with increasing Rayleigh and a cross-over with
δθ > δu for Ra < 2× 107 and δu > δθ for Ra > 2× 107 was observed. Although the
transitional Rayleigh number is considerably different from that indicated in figure 30
the trend is correct since a straight line drawn at Pr = 0.7 initially crosses l-subscript
regions and eventually ends up in u-subscript zones.

A deeper comparison should also involve the balances of the dissipations and
possibly larger-aspect-ratio geometries in order to verify whether the aspect ratio
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effect decreases with increasing Γ and whether a threshold value exists. Since these
different dynamics result in different Nu vs. Ra relationships, this aspect deserves
more investigation and it will be the topic for a future study.

A final word of warning should be given about the observed change of scaling
for the highest values of Ra. In fact, the present results showed a transition in the
mean flow structure and in the heat transfer for 109 6 Ra 6 1010 while, on the other
hand, our available computers allowed us to perform reliable simulations ‘limited’
to Ra 6 2 × 1011. This implies that any claim about the transition relies only on
observations on one decade in Ra (2× 1010 6 Ra 6 2× 1011) without evidence about
the persistence of this change to higher Ra. In addition, as explained in § 2, we cannot
capture by direct numerical simulations all the very low-frequency phenomena related
to the mean wind reversal observed by Niemela et al. (2001); therefore there might
be the possibility that the observed transition is a temporary change associated with
the formation of the new structure and that at still higher Ra the original scaling
appears again.

We wish to thank Dr J. Niemela, Dr F. Chillà and Dr B. Castaing for fruitful
discussions and for providing some experimental data. The simulation at the highest
Rayleigh was possible thanks to the computer facilities of CASPUR (Consorzio
interuniversitario per le Applicazioni di Supercalcolo Per Università e Ricerca). Drs
F. Massaioli and G. Amati are gratefully acknowledged for the technical support in
implementing openMP and using parallel computers.
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